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We analyze the density distribution and the adsorption of solvent hard spheres in an annular slit formed by
two large solute spheres or a large solute and a wall at close distances by means of fundamental measure
density-functional theory, anisotropic integral equations, and simulations. We find that the main features of the
density distribution in the slit are described by an effective two-dimensional system of disks in the vicinity of
a central obstacle. This has an immediate consequence for the depletion force between the solutes �or the wall
and the solute� since the latter receives a strong line-tension contribution due to the adsorption of the effective
disks at the circumference of the central obstacle. For large solute-solvent size ratios, the resulting depletion
force has a straightforward geometrical interpretation which gives a precise “colloidal” limit for the depletion
interaction. For intermediate size ratios of 5–10 and high solvent packing fractions larger than 0.4, the explicit
density-functional results show a deep attractive well for the depletion potential at solute contact, possibly
indicating demixing in a binary mixture at low solute and high solvent packing fraction besides the occurrence
of gelation and freezing.
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I. INTRODUCTION

The equilibrium statistical theory of inhomogeneous flu-
ids whose foundations were laid out in the 1960s �1,2� is a
well-studied subject which has been developed since by a
fruitful interplay between simulations and theory. For the
simplest molecular model, the hard-body fluid mixture, this
has led to the development of powerful geometry-based den-
sity functionals �3–8� which accurately describe adsorption
phenomena, phase transitions �such as freezing for pure hard
spheres or demixing for entropic colloid-polymer mixtures�,
and molecular layering near obstacles. Such a class of den-
sity functionals has not been found yet for fluids with attrac-
tions; however, significant progress has been achieved in the
description of bulk correlation functions and phase diagrams
through the method of integral equations �IEs� �9–11�.

Strong inhomogeneities occur if fluids are confined on
molecular scales, a topic which enjoys continuous interest
�12,13�. For example, the packing of molecules between par-
allel walls leads to oscillating forces between them which
can be measured experimentally and determined theoreti-
cally �14�. With the development of preparational techniques
for colloids and their mixtures, the “molecular” length scale
has been lifted to the range of several nanometers up to mi-
crometers which even allows the direct observation of modu-
lated density profiles through microscopy besides the mea-
surement of resulting forces on the walls. Furthermore, in the
colloidal domain the possibility to tailor the interparticle in-
teractions to a certain degree allows the close realization of
some of the favorite models for simple fluids fancied by
theorists, such as e.g., hard spheres �15�. This has opened the
route to quantitative comparisons between experiment,
theory, and simulations.

In an asymmetric colloidal mixture with small “solvent”
particles and at least one species of larger solute particles,

the phenomenon of solvent-mediated effective interactions
between the solute particles may give rise to various phase
separation phenomena �16�. From a theoretical point of view,
these effective interactions are interesting since they facili-
tate the description of mixtures in terms of an equivalent
theory for one species interacting by an effective potential
�17,18�. If the solvent particles possess hard �or at least
steeply repulsive� cores, they are excluded from the region
between two solute particles if the latter are separated by less
than one solvent diameter. This gives rise to strong depletion
forces whose understanding is crucial for the concept of an
effective theory containing only solute degrees of freedom.
Since the magnitude of the depletion force is directly linked
to the solvent density distribution around the solutes, the
quantitative investigation of the solvent confined between
solute particles appears to be important. The confinement
becomes rather extreme for large asymmetry between solute
and solvent �see below�.

In the following we want to concentrate on the idealized
system of additive hard spheres and in particular on the ef-
fective interaction between two solute particles in solvent,
i.e., the case of infinite dilution of solute particles in the
colloidal mixture. �The effective depletion interaction at in-
finite dilution is particularly important for studying mixtures
with large size asymmetry. For small to intermediate size
asymmetry, the effective interaction between the larger par-
ticles in a mixture with a finite concentration of the latter is
also influenced by three-body and higher-order forces.� The
case of the interaction of one solute particle with a wall is a
special case in that the radius of the other solute particle goes
to infinity. For the case of hard spheres �solvent diameter �
=2Rs, solute radius Rb such that the size ratio is �=Rb /Rs,
and R=Rb+Rs is the radius of the exclusion sphere for sol-
vent centers around a solute sphere� it has been found that
the theoretical description using “bulk” methods becomes
increasingly inaccurate for size ratios ��5 and solvent den-
sities �s

�=�s�
3�0.6 when compared to simulations. Here,

the term “bulk methods” refer to methods which determine*oettelm@uni-mainz.de
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the bulk pair correlation function between the colloids,
gbb�r�, from which the depletion potential is obtained as
�W
=−ln gbb. Bulk IE methods �19,20� and the “insertion” trick
in density-functional theory �DFT� �21–24� fall into this cat-
egory. For larger size ratio, one would expect that the well-
known Derjaguin approximation �25–27� becomes accurate
very quickly. Interestingly, however, both the mentioned
bulk methods and simulations deviate significantly from the
Derjaguin approximation �besides disagreeing with each
other� for size ratios of 10 and solvent densities �s

�

=0.6, . . . ,0.7 �27–29� when the surface-to-surface separation
h between the solute particles is close to � �h��, i.e., at the
onset of the depletion region where the solvent particles are
“squeezed out” between the solute particles�. One notices
that for h�� the solute particles form an annular wedge
with a sharp edge which restricts the solvent particles to
quasi-two-dimensional �quasi-2D� motion �see Fig. 1�. Tak-
ing this observation into account, the phenomenological
analysis in Ref. �27� predicted that the solvent adsorption at
this edge leads to a line contribution to the depletion poten-
tial which is proportional to the circumference of the circular
edge and thus to R1/2. Such a term in the depletion potential
causes a very slow approach to the Derjaguin limit for large
solutes �the Derjaguin approximation describes the depletion
potential essentially by volume and area terms of the overlap
of the exclusion spheres pertaining to the solutes �26,27�; see
below�. In this way, a generalized Derjaguin approximation
serving as a new “colloidal” limit can be formulated which
turns out to have a far more general meaning �30� than an-
ticipated. Using the concept of morphological �morphomet-
ric� thermodynamics introduced in Ref. �31�, one finds that
the insertion free energy of two solute particles �and thus the
depletion potential between them� only depends on the vol-
ume, surface area, and the integrated mean and Gaussian
curvatures of the solvent accessible surface around the two

solutes. The coefficients of these four terms depend on the
solvent density but not on the specific type of surface. In this
manner, the phenomenological line tension in Ref. �27� is
related to the general coefficient of mean curvature of the
hard-sphere �HS� fluid �30�, and the Derjaguin approxima-
tion is equivalent to the morphometric analysis restricted to
volume and surface area terms.

Since the depletion force in the hard-sphere system is di-
rectly linked to an integral over the solvent contact density
on one solute �see Eqs. �1� and �2� below�, one should be
able to connect the morphometric approach to features of the
solvent density profile in the annular wedge. This is a strong
motivation for us to explicitly determine the wedge density
profile. We will do so by means of density-functional theory
and anisotropic integral equations and compare it to results
of Monte Carlo �MC� simulations for selected parameters.
For the intermediate densities �s

�=0.6 and 0.7 and various
size ratios between solute and solvent results for the deple-
tion force from such explicit DFT calculations were already
presented in Ref. �30�, and good agreement with the morpho-
metric depletion force was obtained for size ratios between 5
and 40. Here, we will present a detailed analysis of the
wedge density profiles and consider also higher densities. We
will give a thorough comparison to recent results from MC
simulations which have been obtained for the wall-solute
interaction at a solvent density �s

�=0.764 �	s= �
 /6��s�
3

=0.4� and size ratios between 10 and 100 �32–34�.
The paper is structured as follows. In Sec. II we introduce

the basic notions of density-functional and integral equation
theories and present a short description of the Monte Carlo
simulations employed here. In Sec. III A we analyze in detail
the density profiles and the corresponding depletion forces
for the wall-sphere geometry for the particular solvent den-
sity �s

�=0.764. This geometry permits explicit calculations
up to solute-solvent size ratios 100 and a test of the “colloi-
dal limit” of the morphometric depletion force. Section III B
gives an analysis of the depletion force and potential in the
sphere-sphere geometry �corresponding to the important case
of the effective interaction in a dilute mixture� for interme-
diate size ratios of 5 and 10 and higher solvent densities �s

�

=0.8, . . . ,0.9.

II. THEORY AND METHODS

We consider two scenarios �see Fig. 2�. �a� One hard sol-
ute sphere immersed in the hard-sphere solvent of density �s
confined to a slit, created by two hard walls at distance L.
The surface-to-surface distance between one wall and the
solute sphere is denoted by h, furthermore L�h such that the
correlations from one wall do not influence the solute inter-
action with the other wall. �b� Two hard solute spheres im-
mersed in the bulk solvent spheres with surface-to-surface
distance h. The solvent accessible surface is given by the
dashed lines in Fig. 2, thereby one sees that for h�� the two
solutes �or the solute and one wall� form an annular wedge in
which the solvent adsorbs. The solvent density profile ��r�
���r� ,z� depends only on z, the coordinate on the symmetry
axis, and the distance r� to the symmetry axis. In the latter
case �b�, when the first colloid is centered at the origin and
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FIG. 1. �Color online� The annular wedge which is formed be-
tween two large solute particles for separations h��. Black areas
denote domains which are forbidden for the centers of the solvent
spheres.
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the second one at z=2Rb+h, the total force f�h� on the first
colloid is obtained by integrating the force −�ubs�r� �ubs is
the solute-solvent potential� between the solute and one sol-
vent sphere over the density distribution ��r�,

�f�h� = −� d3r��r�ez · �ubs�r�

= 2
R2�
−1

1

d�cos ��cos ���r� ,

��r� = R, cos � = r̂ · ez� . �1�

Thus the total depletion force reduces to an integral over
essentially the contact density on the exclusion sphere
around the colloid. This follows from exp�−�ubs���ubs
=−r̂��r�−R� and the observation that ��r�exp��ubs� is con-
tinuous across the exclusion sphere surface. In case �a�, the
force on the colloid is the negative of the excess force fw on
the wall and the excess force is determined by the total force
on the wall minus the contribution from the bulk solvent
pressure p. Through the wall theorem, the latter is given by
�p=�w, where �w is the contact density of the solvent at a
single wall. By an argument similar to the above one and

putting the exclusion surface of the wall at z=0, fw is deter-
mined as

�fw�h� = − 2
�
0

�

r�dr����r�,z = 0� − �w� . �2�

Thus, fw is equivalent to the excess adsorption at the wall
which makes it somewhat easier to determine in MC simu-
lations than f �33�.

A. Density-functional theory

The equilibrium solvent density profile ��r���eq�r� can
be determined directly from the basic equations of density-
functional theory. The grand potential functional is given by

���� = Fid��� + Fex��� −� dr�� − Vext�r�� , �3�

where Fid and Fex denote the ideal and excess free energy
functionals of the solvent. The solvent chemical potential is
denoted by � and the solute�s� and/or the walls define the
external potential Vext. The ideal part of the free energy is
given by

�Fid =� dr��r�	ln���r��3� − 1
 , �4�

with � denoting the de Broglie wavelength. The equilibrium
density profile �eq�r� for the solvent at chemical potential
�=�−1 ln��s�

3�+�ex �corresponding to the bulk density �s�
is found by minimizing the grand potential in Eq. �3�,

ln
�eq�r�

�s
+ �Vext�r� = − �

Fex��eq�
��r�

+ ��ex. �5�

For an explicit solution, it is necessary to specify the excess
part of the free energy. Here we employ two functionals of
fundamental measure type �FMT�. These are the original
Rosenfeld functional �FMT-RF� �3� and the White Bear func-
tional �FMT-WB� �with mark I from Refs. �4,5� and mark II
from Ref. �6�� �for another closely related variant see Ref.
�7��. It has been demonstrated that FMT gives very precise
density profiles also for high densities of the hard-sphere
fluid in various circumstances. Furthermore, the White Bear
II functional possesses a high degree of self-consistency with
regard to scaled-particle considerations �6�. However, we do
not consider the tensor-weight modifications of these func-
tionals which are necessary to obtain a correct description of
the liquid-solid transition �35� and are of higher consistency
in confining situations which reduce the dimensionality of
the system �“dimensional crossover;” see Refs. �36,37��. This
might be an issue in some circumstances �see below�.

The explicit forms of the excess free energy are given in
Appendix B. Numerically, due to the nonlocal nature of Fex,
Eq. �5� corresponds to an integral equation for the density
profile depending on the two variables r� and z. The sharp-
ness of the annular wedge in the solute-solute and the solute-
wall problems for high size ratios necessitates rather fine
gridding �which makes the calculation of Fex and Fex /�
very time consuming� and introduces an unusual slowing

(b)

(a)

FIG. 2. View of the geometric configurations used in this work.
�a� Solute sphere of radius Rb immersed in a solvent-filled slit of
width L. Only the density profile in the annular wedge between the
left wall and the solute is of interest since it determines the deple-
tion force between solute and one wall. Note that one can also
determine the slit density profile and the corresponding depletion
force for 2Rb�L �i.e., when the solute does not fit into the slit� as
long as L is large enough that the correlations from the right wall do
not reach into the annular wedge. �b� Two solute spheres of radius
Rb at distance h immersed in bulk solvent. For both setups, the
solvent sphere diameter is given by �, and the radius of the exclu-
sion sphere around a solute particle is given by R=Rb+� /2.
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down of standard iteration procedures of Picard type. To
overcome these difficulties, we made use of fast Hankel
transform techniques and more efficient iteration procedures.
These are described in detail in Appendix B as well.

We remark that there have been earlier attempts to obtain
explicit density distributions using DFT around two fixed
solutes and thereby to extract depletion forces �38–40�. In
Ref. �39� this was done using the simple Tarazona I func-
tional for hard spheres �41�, and considerations were limited
to a small solvent packing fraction of 0.1 and solute-solvent
size ratios of 5. In Ref. �40�, a minimization of FMT-RF was
carried out using a real-space technique for solvent densities
up to �s

�=0.6 and size ratios of 5. In that respect, the present
technique is superior in that it allows us to present solutions
for solvent densities up to �s

�=0.9 and size ratios up to 100.

B. Integral equations

The central objects within the theory of integral equations
are the correlation functions on the one- and two-particle
levels in the solvent. We are interested in the two-particle
correlation functions in the presence of an external back-
ground potential �one fixed object, solute or wall�, from
which the explicit solvent density profiles around the two
fixed objects �solute-solute or solute-wall� follow �see be-
low�. This is usually referred to as the method of inhomoge-
neous or anisotropic integral equations first employed for
Lennard-Jones fluids on solid substrates �42,43� and for HS
fluids in contact with a single hard wall in Ref. �44�. Liquids
confined between two parallel walls �a planar slit� have been
extensively studied by Kjellander and Sarman �45–47�.

For an arbitrary background potential V�r� which corre-
sponds to an equilibrium background density profile for the
solvent �V�r�, the pair correlation function gij�r ,r0�
=hij�r ,r0�+1 describes the normalized probability to find a
particle of species i at position r if another particle of species
j is fixed at position r0. For our system, the species index is
either s �solvent particle� or b �big solute particle�. In the
solute-solute case, this background potential V is given by
the potential of one solute particle, whereas in the solute-
wall case it is the potential of the wall. Then the equilibrium
density profile discussed in Sec. II A �in the presence of the
two solutes or the wall and one solute� is related to the pair
correlation function through ��r�=�V�r�gsb�r ,r0� �r0 speci-
fies the position of the �other� solute particle�. The depletion
force follows then through Eqs. �1� and �2�.

The corresponding direct correlation functions of second
order cij�r ,r0� are related to hij through the inhomogeneous
Ornstein-Zernike �OZ� equations,

hij�r,r0� − cij�r,r0� = �
k=b,s

� dr��V,k�r��hik�r,r��ckj�r�,r0� .

�6�

In the dilute limit for the solute particles which we consider
here, the background density �V,b for the solutes is zero,
therefore the OZ equations reduce to

hss�r,r0� − css�r,r0� =� dr��V�r��hss�r,r��css�r�,r0� ,

�7�

hbs�r,r0� − cbs�r,r0� =� dr��V�r��hbs�r,r��css�r�,r0� .

�8�

The background density profile is linked to css through the
Lovett-Mou-Buff-Wertheim �LMBW� equation �48�,

��V�r� = − ��V�r� � V�r� + �V�r�� dr�css�r,r�� � �V�r�� .

�9�

A third set of equations is necessary to close the system of
equations. The diagrammatic analysis in Ref. �1� provides
the general form of this closure which reads as

ln gij�r,r0� + �uij�r − r0� = hij�r,r0� − cij�r,r0� − bij�r,r0� ,

�10�

where uij are the pair potentials in the solute-solvent mixture
and bij denote the bridge functions specified by a certain
class of diagrams which, however, cannot be resummed in a
closed form. For practical applications, these bridge func-
tions need to be specified in terms of hij and cij to arrive at a
closed system of equations. Among the variety of empirical
forms devised for this connection we mention those which,
in our opinion, rely on somewhat more general arguments.
These are the venerable hypernetted chain �HNC�, the
Percus-Yevick �PY� closure, and the mean spherical approxi-
mation �MSA� which can be derived by systematic diagram-
matic arguments �49� and the reference HNC closure which
introduces a suitable reference system for obtaining bij with
subsequent free energy minimization �50�. �For bulk proper-
ties of liquids, the self-consistent Ornstein-Zernike approxi-
mation �SCOZA� �9� and the hierarchical reference theory
�HRT� �10� are very successful. They rely on a closure of
MSA type but it appears to be difficult in generalizing them
to inhomogeneous situations such as considered here.� In cal-
culations, we considered the closures

bij = �ij − ln�1 + �ij� �PY� , �11�

bij = �ij − ln�1 +
exp	�1 − exp�− �ijr���ij
 − 1

1 − exp�− �ijr�  �RY� ,

�12�

bij =
1

2

�ij
2

1 + �ij�ij
�MV� . �13�

where �ij =hij −cij. The PY approximation �Eq. �11�� is ex-
actly solvable in the bulk case even for the muticomponent
HS fluid �51�. However, beyond providing good qualitative
behavior PY does not produce precise quantitative results in
general since it fails at contact where the value of pair dis-
tribution function is too small. For bulk systems, PY gener-
ates a noticeable thermodynamic inconsistency, i.e., a dis-
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crepancy between different routes to the equation of state. To
overcome these deficiencies a refined approximation to the
closure, which interpolates between HNC �bij =0� and PY
closures, was suggested by Rogers and Young �RY� �52� �see
Eq. �12� where the �ij are adjustable parameters�, which can
be found from the thermodynamic consistency requirement
�52�. An even more suitable for the asymmetric HS mixture
variant of the modified Verlet �MV� closure was suggested in
Ref. �53� �see Eq. �13��. Here the parameters �ij are chosen
to satisfy the exact relation between bij�0� and the third virial
coefficient at low densities. For the choice of the auxiliary
parameters �ij and �ij in the present work, see Appendix C.

We have solved the set of Eqs. �7�–�13� for the solute-wall
case where we could employ similar numerical methods as in
the numerical treatment of density-functional theory. �This is
not possible for the solute-solute case; for an efficient
method applicable in this case, see Ref. �54�.� In the solute-
wall case, the background density profile �V�r���V�z� de-
pends only on the distance z from the wall. The two-particle
correlation functions depend on the z coordinates of the two
particles individually and the difference in the radial coordi-
nates: gij�r ,r0��gij�z ,z0 ,r� −r�,0�. Thus, the Ornstein-
Zernike equations �Eqs. �7� and �8�� become matrix equa-
tions for the correlation functions in the z coordinates and are
diagonal for the Hankel transforms of the correlation func-
tions in the r� coordinates. For more details on the numerical
procedure, see Appendix C.

C. Simulation details

The Monte Carlo simulations for the wall-solute system
were performed at fixed particle number and volume of the
simulation box. The upper boundary of the box was given by
a large hard sphere and the lower was given boundary by a
planar hard wall �see hatched regions in Fig. 3�. All remain-
ing boundaries were treated as periodic. We sampled the con-
figuration space of the small spheres by standard single par-
ticle translational moves. In order to impose the asymptotic
solvent bulk density �s

�=0.764 �	s=0.4�, the concentration of
small spheres in the box was set such that the density at
contact with the hard wall far away from the wedge �i.e., in
the region marked by gray squares in Fig. 3, averaged over a

depth of 0.02�� settled to �̄wall=4.88 within 1% error. This
value �̄wall=4.88 was obtained from the density profile of
hard spheres at a hard wall at the bulk packing fraction of
0.4, calculated with FMT-WBII which is very accurate. Sys-
tem sizes ranged from 1800 particles for Rb=10� to 8000
particles for Rb=25�. In order to access the configurations
inside the narrow part of the wedge with sufficient accuracy,
large numbers of Monte Carlo sweeps were required. We
equilibrated the systems for 5�105 MC sweeps �i.e., at-
tempted moves per particle� each. For data acquisition, we
performed between 107 and 108 sweeps �depending on the
parameters h and Rb� and averaged over 106–107 samples.
Note that from the simulations we obtained only the wedge
density profiles �see Figs. 5–7 below� but did not attempt to
obtain the depletion force from Eq. �2� where one needs an
excess adsorption integral at the wall. This would require
considerably more sweeps �33,34� �see also Fig. 8 below for
the statistical errors of the simulated depletion force accord-
ing to Ref. �33��.

III. RESULTS

A. Wall-solute interaction

In this section, we analyze case �a�, the problem of a
solute sphere close to a wall. Previous simulation work
�32–34� has concentrated on the particular state point �s

�

=0.764 �packing fraction 	s=0.4�, therefore we present ex-
plicit results for the density profiles also for this state point to
facilitate comparison.

1. Density profiles

In Fig. 4, we show DFT results for the solvent density
profile between wall and solute for a solute-solvent size ratio
of 20 and solvent-wall distances h=0 �i.e., contact between
wall and solute molecular surface; left panel� and h=� �i.e.,
the end of the depletion region; right panel�. There is strong
adsorption at the apex of the annular wedge, given by the
coordinates z=0 and r� =r0 with

r0 = �2R�h − �� − �h − ��2, �14�

as reflected by the main peak. Along the wall �z=0�, we
observe strong structuring which is mainly dictated by pack-
ing considerations. The apex peak corresponds to a ring of
solvent spheres centered at r� =r0 �for h=0� or just one
sphere near r� =0 �for h=��. The second-highest peak in both
panels of Fig. 4 appears where the distance between wall and
solute sphere, measured along the z axis, is approximately
2� and thus two rings of spheres fit between solute and wall.
However, for h=0 �left panel of Fig. 4� packing in r� direc-
tion leads to further structuring of the density profile close to
the apex of the wedge.

The integral of the solvent density at the wall �i.e., the
adsorption at the wall� directly determines the depletion
force �see Eq. �2��. Therefore, we analyze the density at the
wall further. In Fig. 5 we show ��r� ,z=0� computed with
FMT-RF, FMT-WBII, and IE-MV and compare the results to
the simulation data in Ref. �33�. Overall, DFT performs quite
well but it tends to overestimate the structuring of the profile.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

FIG. 3. Sketch of the simulation box. Hard walls are marked by
hatches. The remaining boundaries were treated as periodic. The
gray squares mark the regions in which the density at wall contact
was sampled.
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The currently most consistent version, FMT-WBII, improves
over FMT-RF particularly in this respect. The integral equa-
tion results for the different closures are very similar to each
other and are approximately of the same quality as the solu-
tions of FMT-RF. Note that the simulation data in Ref. �33�
have been averaged over a distance of 0.02� from the wall.
This average was also applied to the DFT data �which are
computed with mesh size �z=0.002��, whereas for the IE
results we show a suitable weighted average of the zeroth
and first bin ��z=0.05�, assuming linear interpolation. As
seen in the right panel of Fig. 5, IE-MV gives a much lower
density close to the apex of the wedge compared to the other
methods. This is presumably due to the lower resolution in z
direction which is possible for IE �see Appendix C�.

To further investigate the issue of the dominant packing
mode in the annular wedge, we performed DFT calculations
also for the additional size ratios 10, 30, 50, and 100 for the
same solvent density �s

�=0.764. Packing in r� direction can
be monitored conveniently by viewing the annular wedge

close to the apex as a quasi-2D system �see Fig. 1 and the
remarks in Sec. I�. We define an effective two-dimensional
solvent density by

�2D�r�� = �
0

zs�r��

dz��r�,z� , �15�

where zs�r��=R− ��−h�−�R2−r�
2�r�

2 / �2R�− ��−h� defines
the distance �in z direction� of the exclusion sphere around
the solute from the wall �and thus the radius-dependent width
of the annular wedge�. In Fig. 6 we show results for �2D�r��
for two configurations with slightly different solute-wall dis-
tances: h=0.95� �a� and h=� �b�. In the latter case, one
solvent sphere fits exactly between solute and wall at the
apex; nevertheless �2D vanishes there due to the vanishing
slit width, zs�r�→0�→0. Note that this is also a consequence
of an application of the potential distribution theorem �55�
which states that the three-dimensional �3D� density reaches
a finite maximum value of exp���ex� in a planar slit of van-

FIG. 4. Density profiles from FMT-WBII of solvent spheres confined to the annular wedge between a solute sphere �size ratio Rb /Rs

=20� and a wall. The bulk solvent density is �s
�=0.764, and the wall separation L=26� �see Fig. 2�a��. Grid resolution was equidistant in z

with �z=0.002� and equidistant in x=ln�r� /�� with �x=0.005 �see Appendix B 2�. Left panel: solute-wall distance h=0; right panel: h
=�.
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FIG. 5. �Color online� Comparison between the various theoretical methods and MC simulations �ours and from Ref. �33�� for the density
at the wall �averaged over a distance of 0.02��. Left panel: solute-wall distance h=0; right panel: h=�. The solute-solvent ratio is 20 and
the solvent bulk density is �s

�=0.764. Note the logarithmic scale on the density axis.
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ishing width which is equivalent to a vanishing 2D density
��ex is the excess chemical potential of the bulk solvent
coupled to the slit�. However, when the slit widens, the 2D
density quickly rises �27�. For h=� �right panel in Fig. 6�,
this leads to the picture of an effective 2D system with a
small, soft, and repulsive obstacle centered at r� =0 which
induces moderate layering in the 2D bulk with an effective
bulk density �2D,s�0.7, . . . ,0.8. For h=0.95� �left panel in
Fig. 6�, the obstacle in the center has a radial extent of r0
��R� /10 which ranges from 0.75� �size ratio of 10� to
2.25� �size ratio of 100� and induces stronger layering in the
effective 2D system. The oscillations occur around the same
bulk density as in the case h=�. The simulation results show
weaker oscillations than the DFT results. Since the first peak,
e.g., occurs at wedge widths �0.03�, we are testing the di-
mensional crossover properties of DFT-FMT from 3D to 2D
with a sensitive probe. The difference between the results of
the simulations and the DFT versions employed here is in
line with previous investigations on the dimensional cross-
over properties of FMT �37�. There it has been found that the
strict 2D limit of FMT-RF results in a somewhat peculiar
�integrable� divergence in the hard disk direct correlation

function c2D�r� for r→0 and overestimated peaks in the cor-
responding structure factor. The tensor weight modifications
introduced in Ref. �35� result in better dimensional crossover
properties �56� and might improve the DFT results close to
the apex of the annular wedge. A more detailed investigation
of tensor-weighted FMT with regard to the correlations in
narrow planar slits and also in the annular wedges considered
here is certainly of interest �although the algebra of Appen-
dix B becomes much more extended in this case�.

Our observations should be compared with the phenom-
enological modeling in Ref. �27� �“annular slit approxima-
tion”�. There, the effective 2D system was approximated by
an idealized system of hard disks, layering around a hard
cavity of radius r0��r0 centered around r� =0. Here, r0 is the
apex radius of the annular wedge �Eq. �14�� for which
zs�r0�=0. The bulk density �2D,s of this hard disk system was
determined via the self-consistency condition p2D��2D,s�=
−2���s�, where p2D is the 2D pressure and � is the surface
tension of a hard wall immersed in a bulk solvent of density
�s. Employing scaled particle theory �57�, this yields �2D,s

�

�0.66 for �s
�=0.764. This value is a bit smaller than the one

inferred from the 2D density profiles of Fig. 6. The main
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difference between the idealized hard disk system in Ref.
�27� and the effective 2D system as reflected in Fig. 6 lies
probably in the softness of the central cavity obstacle and
also the softness of the effective particle interactions due to
the widening of the slit. Apart from that the overall picture in
Ref. �27� is confirmed well. In particular, this implies an
important observable consequence: the cavity circumference
�of length 2
r0�� induces a line contribution 2
r0��2D��2D,s�
to the insertion free energy of the solute near the wall. Since
the insertion free energy is equivalent to the depletion poten-
tial up to an additive constant, the latter acquires a term
��R��−h�; the corresponding term in the depletion force is
��R / ��−h�. �Note that for h→� the cavity radius should
stay finite as reflected in Fig. 6 �right panel�; thus the diver-
gence of the depletion force there according to the geometri-
cal argument of equating the cavity radius strictly with r0 is
unphysical.� The interpretation of this line energy term
within the more general framework of morphometric thermo-
dynamics will be given below.

We have seen that in radial direction, the packing of the
solvent spheres close to the apex of the annular wedge is
well understood by the quasi-2D picture developed above.
For the particular point h=�, there is only moderate layering
in r� direction; thus the full density profile should be deter-
mined mainly by packing in z direction. Indeed, for h=� we
observe a quite remarkable collapse of the density profiles at
the wall when plotted as a function of r̂=r� /�R� �see Fig. 7�,
indicating the relative unimportance of packing in radial di-
rection. According to Eq. �2�, perfect scaling would imply
that the depletion force at h=� is proportional to R. The DFT
data violate scaling for r̂�0.2 �i.e., when the slit width is
smaller than 0.02��, as can be seen from Fig. 7 �left panel,
inset�. This leads to a slow increase in the scaled depletion
force fw / �2R� �see Fig. 7 �right panel��. In contrast, the
simulation results in Ref. �34� indicate that fw / �2R� stays
constant for large R, quite in agreement with an upper bound
derived within the annular slit approximation in Ref. �27�

which reads fw / �2R�=−2
���s��1−	2D�, where 	2D
= �
 /4��2D,s�

2 is the 2D bulk packing fraction. Note that the
value of the Derjaguin approximation at h=�, fw / �2R�
=−2
���s�, is completely off the simulation as well as the
DFT values �see Sec. III A 2�.

2. Geometric interpretation of the depletion force

Morphological �morphometric� thermodynamics �31� pro-
vides a powerful interpretation of the depletion interaction,
as has been shown very recently in the special case of the
solute-solute interaction �30�. Up to a constant, the depletion
potential is nothing but the solvation free energy of the wall
and the solute. In morphological thermodynamics the solva-
tion free energy Fsol of a body is separated into geometric
measures defined by its surface. As the surface, we take the
solvent-accessible surface, i.e., the body surface of the com-
bined wall-solute object is defined by the dashed lines in Fig.
2�a�. These geometric measures are the enclosed volume V,
the surface area A, the integrated mean, and the Gaussian
curvatures C and X. To each measure there is an associated
thermodynamic coefficient: the pressure p, the planar wall
surface tension �, and the two bending rigidities � and �̄
such that

Fsol = pV + �A + �C + �̄X . �16�

Due to the separation of the solvation free energy into geo-
metrical measures and geometry independent thermody-
namic coefficients, it is possible to obtain the coefficients p,
�, �, and �̄ in simple geometries. The pressure p is a bulk
quantity of the fluid. The surface tension � accounts for the
free energy cost of forming an inhomogeneous density dis-
tribution close to a planar wall. If the wall is curved the
additional free energy cost is measured by � and �̄. It is
possible to obtain all four coefficients from a set of solvation
free energies of a spherical particle with varying radius. For
a hard-sphere solute in a hard-sphere solvent very accurate
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FIG. 8. �Color online� Depletion force between wall and solute for solvent bulk density �s
�=0.764. �Left panel� solute-solvent size ratio

of 20. Simulation data are shown by crosses �� � and circles ��� and differ by a slightly different choice of �w in Eq. �2� �see Refs. �32,33�
for details�. Results from explicit FMT-WBII minimization are given by the full squares and results from IE-MV are shown by asterisks. The
dashed-dotted line shows the insertion route result using the WBII functional and the dashed line gives the Derjaguin approximation. The
excess surface free energy of two parallel hard walls, needed for the Derjaguin approximation, has been calculated with the WBII functional.
�Right panel� depletion force for different solute-solvent size ratios. Symbols are results from explicit FMT-WBII minimization, lines in
ascending order are morphometric results for size ratios of 10, 20, 30, 50, 100, and � �Derjaguin approximation�.
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analytic expressions for the thermodynamic coefficients are
known from FMT-WBII �6� �see also Appendix A�.

For the particular case considered here, the depletion po-
tential W�h� follows by subtracting from Fsol the sum of the
solvation free energies of a single wall and a single solute
sphere. Thus we find

W�h � �� = − p�V − ��A − ��C − 4
�̄ , �17�

where �V and �A are the volume and surface area of the
overlap of the exclusion �depletion� zones around wall and
solute, respectively, and �C is the integrated mean curvature
of that overlap volume. Note that the in fourth characteristic,
the integrated Gaussian curvature is the Euler characteristic
which is 4
 for wall and solute at h�� �one connected
body� and 8
 for wall and solute at h�� �two disconnected
bodies�. This explains the last term in Eq. �17�. The geomet-
ric measures �V, �A, and �C are given by

�V =



3
�� − h�2�3R − �� − h�� �

R→�


R�� − h�2 + O�R0� ,

�A = 4
R�� − h� − 
�� − h�2 �
R→�

4
R�� − h� + O�R0� ,

�C = 2
�� − h� + 
�2R�� − h� − �� − h�2

��


2
+ arcsin�1 −

� − h

R
�

�
R→�


2�2R�� − h� + O�R0� . �18�

The depletion force follows as fw�h�=−�W /�h. In the limit
R→� it is given by

fw�h � ��
2
R

�
R→�

p�h − �� − 2� − �



2
� 1

2R�� − h�
. �19�

The contribution from the integrated mean curvature is sub-
leading in 1 /R1/2 but it is quantitatively important since it
induces a singularity as h→� which is proportional to
1 / ��−h�1/2. This contribution precisely corresponds to the
line-tension term associated with the circular apex �of length
2
r0� of the annular wedge identified in the quasi-2D analy-
sis in Ref. �27� and introduced in Sec. III B. The line tension
in the quasi-2D picture was shown to be �2D��2D,s� and in the
geometric analysis it is −
� /2. There is good agreement
between both expressions �30�. Strictly, the singularity asso-
ciated with this line term is unphysical of course. Indeed, it
can be shown that the morphometric analysis becomes am-
biguous very close to h=�. One would require that the mor-
phometric result for the force is unchanged if another slightly
displaced surface around the solute sphere is chosen for the
geometric analysis. In Ref. �30�, such an analysis was carried
out for the sphere-sphere geometry and the independence of
the force on the chosen surface was demonstrated. However,
if one chooses, e.g., the molecular surface �the surface of the
set of points which is never covered by a small solvent
sphere�, then this surface becomes self-overlapping close to
h=� and one could not expect to ascribe physical signifi-
cance to surface tensions and mean curvature coefficients of

such overlapping surfaces. For the sphere-wall geometry a
similar analysis holds. Note that the singularity at h=� cor-
responds to a vanishing circumference of the apex �r0=0�;
however, the 2D analysis of the density distributions close to
this point corresponds to a physical picture for the solvent
gas confined to 2D where the hard cavity of radius r0→0 is
replaced by a soft repulsive cavity with an effective radius
r0�r0, as can be seen from the smoothly rising 2D density in
the vicinity of r� =0 in Fig. 6 �right panel�.

In Fig. 8 �left panel� we show FMT-WBII and IE-MV
results for the depletion force fw between a big sphere and a
wall �size ratio of 20, solvent bulk density �s

�=0.764� and
compare them to MC results from Refs. �32,33� as well as to
the morphometric analysis. The force according to mor-
phometry is plotted only until self-intersection of the mo-
lecular surface starts. The FMT data are described very well
by the morphometric results; the sharp drop in the depletion
force close to h=� appears to mimic the behavior of the
singular term ���C /�h. The MC data suffer from relatively
large error bars �except for the point h=�� but are overall
consistent with both the FMT data and the morphometric
analysis. The scatter in the IE-MV data is due to the com-
paratively low resolution in z direction as compared to the
DFT data ��z=0.05� vs �z=0.002��. As before, all consid-
ered IE closures give similar results, but these correspond to
an overall more attractive force compared to DFT and MC.
Two other approximations for the depletion force are shown
in Fig. 8 �left panel�: the DFT insertion route and the Der-
jaguin approximation. Both approximations fail to describe
the depletion force near h=�. In the insertion route to DFT
�see Ref. �21� for its derivation�, one circumvents the explicit
calculation of the density profile around the fixed wall and
solute by exploiting the relation

�W�x� = lim
�b→0

� Fex

�b�x�
�

�s�r�=�w�z�
− �b

ex��s� . �20�

Here, �b
ex��s� is the excess chemical potential for inserting

one solute into the solvent with density �s. The functional
derivative of the mixture functional has to be evaluated in the
dilute limit for the solutes, �b→0, and with the solvent den-
sity profile given by the profile at a hard wall ��w�z��. This
method relies on an accurate representation of mixture ef-
fects for large size ratios in the free energy functional. There-
fore, the observed deviations in the depletion force presum-
ably follow from the insufficient representation of higher-
order direct correlation functions of strongly asymmetric
mixtures in the present forms of FMT �58�. The Derjaguin
approximation, on the other hand, corresponds to the leading
term for R→� in Eq. �19� inside the depletion region
�h��� but is easily extended to h�� �26,27�,

fw
Derjaguin

2
R
= �p�h − �� − 2� �h � ��

�slit�h� − 2� �h � �� ,
� �21�

with �slit�h� denoting the excess surface energy of two par-
allel hard walls at distance h forming a slit. According to Eq.
�2�, the Derjaguin force scales with R �colloidal limit� which
is an excellent approximation outside the depletion region.
�Incidentally, outside the depletion region all methods and
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the Derjaguin approximation agree with each other.� Inside
the depletion region, the neglected mean curvature �or line-
tension� term is very significant.

Explicit FMT-WBII results for the depletion force for size
ratios up to 100 are shown in Fig. 8 �right panel� and com-
pared to the morphometric analysis �symbols vs full lines�.
Whereas for size ratio of 10 some discrepancies are still vis-
ible, they have more or less vanished for size ratio of 100
�except for the point h=�, see the previous discussion�. Thus
the morphometric form for the depletion force �Eq. �19�� can
be regarded as the appropriate colloidal limit.

B. Solute-solute interaction

We now turn to the case of the depletion force between
two big solute particles which are immersed in the hard sol-
vent. Considering the evidence from the sphere-wall case, we
would expect that for large size ratios, the morphometric
picture reliably describes the depletion force. Since the ge-
ometry of the overlap volume between two spheres is differ-
ent from that between a sphere and a wall, we find also a
slightly different form for the morphometric force in the
limit R→�,

f�h � ��

R

�
R→�

p�h − �� − 2� − �



2
� 1

R�� − h�
. �22�

Thereby, one sees that the scaling relation fw=2f , valid
within the Derjaguin approximation, is violated through the
appearance of the mean curvature �line-tension� term. For
moderate solvent densities up to �s

�=0.7 morphometric form
�22� gives a good description of the depletion force for size
ratios ��10. This has been reported in Ref. �30�. An analy-
sis of the full solvent density profiles between the two sol-
utes reveals the same features as described in Sec. III A.

It is interesting to investigate the regime where the mor-
phometric description is expected to fail. This will happen
when there are strong correlations in the whole annular
wedge, i.e., where packing in both the r� and the z directions
becomes important. Typically, intermediate size ratios and

higher solvent densities will induce these strong correlations.
Therefore, we have investigated the depletion force for size
ratios of 5 and 10 and solvent densities �s

�=0.8 and �s
�=0.9.

In Figs. 9 and 10 we show results for the depletion force and
potential at �s

�=0.8 for size ratios of 5 and 10, respectively.
For size ratio of 5, the explicit DFT calculations yield a
depletion force which does not correspond to the morpho-
metric result at all. It is closer to the insertion route �see Eq.
�20�� though systematically lower. This yields a depletion
potential �Fig. 9 �right panel�� which is about 1kBT or 25%
more attractive at contact than that of the insertion route. For
size ratio of 10, the explicit DFT data for the depletion force
reflect the morphometric form as h→�, i.e., they give again
evidence for importance of the mean curvature �line-tension�
term in Eq. �22�. However, away from that regime, the deple-
tion force deviates significantly from both the morphometric
form and the insertion route result such that the depletion
potential at contact �Fig. 10 �right panel�� is about 3kBT or
50% more attractive at contact than that of the insertion route
�for FMT-WBII�.

Note that at such a high solvent density ��s
�=0.8� there are

already significant deviations between FMT-RF and FMT-
WBII �Fig. 10 �right panel�, circles and squares�. Since FMT-
WBII has been designed to improve thermodynamic and
morphometric consistency at higher densities, the corre-
sponding results can be assumed to be more trustworthy. As
an additional check of the numerics, we calculated the deple-
tion force in two ways: �a� via the surface integral in Eq. �1�
and �b� via the centered difference of the results for the
depletion potential �see Figs. 9 and 10 �left panel�, squares
and circles�. The latter is simply obtained as

W�h� = ����r�;h����r�=�eq�r�,z;h�

− ����r�;h → �����r�=�eq�r�,z;h→��, �23�

where the grand potential � and the equilibrium density
�eq�r� ,z ;h� around the two solutes at distance h are deter-
mined by the basic DFT Eqs. �3� and �5�, respectively. The
agreement between routes �a� and �b� is very good, save for
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FIG. 9. �Color online� Left panel: depletion force between two solutes. Circles correspond to the centered difference of the FMT-WBII
data for the depletion potential �right panel�, while squares give the FMT-WBII depletion force according to the surface integral in Eq. �1�.
Right panel: depletion potential between two solutes. The curve for the morphometric potential has been shifted by −1. The solvent density
is �s

�=0.8 and the solute-solvent size ratio is 5.
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some “fluctuations” in route �b� close to the point h=�
where the density oscillations in the wedge are most pro-
nounced. The equality of both routes checks a sum rule
check similar to the hard wall sum rule for the problem of
one wall immersed in solvent. Weighted-DFTs usually fulfill
the latter and other related sum rules �59,60�.

The differences between the insertion route and the ex-
plicit FMT data become more dramatic for higher densities.
In Fig. 11 we show results for the depletion potential for a
solute-solvent size ratio of 5 at solvent densities of 0.85 and
0.9 �left panel� and for a size ratio of 10 at density of 0.85
�right panel�. For size ratio of 5 the repulsive barrier has
almost vanished for �s

�=0.9, and the potential well at contact
is almost twice as deep as compared with the insertion route.
For size ratio of 10, the barrier remains �albeit at a different
location� but the well depth is equally enhanced by a factor 2
compared with the insertion route as for size ratio of 5.

The significant deviations of the depletion potential �ac-
cording to the explicit FMT-WBII results� from the previ-
ously known approximations �Derjaguin approximation and
insertion route� sheds some doubts on the quantitative accu-
racy of simulations of binary hard-sphere mixtures �with

asymmetries between 5 and 10�, employing an effective one-
component approach for the solutes interacting with their
depletion potential. In Ref. �18� the phase diagram of the
mixture was scanned in that way using a virial expansion to
third order in the Derjaguin approximation for the depletion
potential �see the dotted-dashed curves in Figs. 9 and 10
�right panel��. Especially for size ratio of 5, the explicit DFT
results predict a depletion potential with much smaller bar-
rier and a deeper well at contact. This might affect the phase
diagram in the corner where the packing fraction of the sol-
utes is low and the solvent packing fraction is high. In Ref.
�61� gelation in hard spherelike asymmetric mixtures is in-
vestigated with an integral equation approach �reference
functional approximation �11�� to the depletion potential,
akin to the insertion route. We expect quantitative deviations
at higher solvent densities compared to explicit DFT calcu-
lations which again affect the corner of the phase diagram
with low solute and high solvent packing fraction.

Finally we want to mention that the explicit DFT methods
introduced here, together with the morphometric form of the
depletion force in Eq. �22�, can be used to improve available
analytic forms �62,63� for the contact values of the pair
correlation functions in hard-sphere mixtures �note that
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FIG. 10. �Color online� Left panel: depletion force between two solutes. Circles correspond to the centered difference of the FMT-WBII
data for the depletion potential �right panel�, while squares give the FMT-WBII depletion force according to the surface integral in Eq. �1�.
Right panel: depletion potential between two solutes. Squares correspond to FMT-WBII results and circles to FMT-RF results. The curve for
the morphometric potential has been shifted by −2. The solvent density is �s
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FIG. 11. �Color online� Depletion potential between two solutes, comparison between explicit FMT-WBII data and the insertion route.
Left panel: solute-solvent size ratio of 5 and solvent densities �s

�=0.85 and 0.9. Right panel: size ratio 10 and �s
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the solute-solute contact value is given by gbb�2Rb�
=exp�−�W�0���.

IV. SUMMARY AND CONCLUSIONS

We have presented a detailed analysis of the relationship
between depletion forces �solute-wall and solute-solute� in a
hard solvent and the associated density distributions around
the fixed wall/solute particles using mainly density-
functional theory of fundamental measure type comple-
mented with Monte Carlo simulations and integral equation
techniques. For large solute-solvent size ratios, the depletion
force is strongly linked to the quasi-two-dimensional con-
finement between the solutes �or the solute and the wall�. We
have shown that the properties of this quasi-two-dimensional
confined system are reflected in the depletion force by a line-
tension term which in turn can be obtained quite generally
through morphological thermodynamics. Thus we can for-
mulate an appropriate colloidal limit for the depletion force
in hard-sphere mixtures: Eq. �19� for the solute-wall case and
Eq. �22� for the solute-solute case. This formulation im-
proves significantly over the Derjaguin approximation which
is a frequently employed tool to estimate colloidal interac-
tions in many circumstances. Related to the morphometric
approach is the treatment of the hard-sphere depletion force
within an inhomogeneous formulation of scaled particle
theory �64�, in which, however, the important line-tension
term has been neglected so far.

Although our analysis has been restricted to hard spheres
only, the formulation of morphological thermodynamics is
very general such that it can be expected that the colloidal
limit for the depletion force holds also in mixtures with more
general interparticle interactions. However, more explicit
tests in this direction are necessary. Of particular interest are
also depletion forces in solvents with anisotropic particles
�65,66�, able to form liquid crystalline phases. These appear
to be tractable within DFT using the recently developed
functional in Ref. �8�.

For intermediate size ratios of 5 and 10 and higher solvent
densities �s

��0.8 we found strong deviations in the solute-
solute depletion force between the explicit density-functional
results on the one hand and the Derjaguin approximation or
morphometry on the other hand. This is a result of the strong
solvent correlations in the annular wedge between the sol-
utes. The depletion well at solute contact is significantly
more attractive �by almost a factor of 2� than previously
estimated. This might have consequences for the phase dia-
gram of binary hard spheres at low solute and high solvent
packing fractions. With recently developed techniques
�67,68�, this question appears to be tractable in direct simu-
lations.
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APPENDIX A: FUNDAMENTAL MEASURE FUNCTIONALS
FOR HARD SPHERES AND ASSOCIATED

THERMODYNAMIC COEFFICIENTS

We consider fundamental measure functionals involving
no tensor-weighted densities which are defined by the fol-
lowing functional for the excess free energy of a hard-sphere
mixture of solvent and solute particles, described by the den-
sity distribution ��r�= 	�s�r� ,�b�r�
,

�Fex =� dr��	n���r��
� ,

��	n���r��
� = − n0 ln�1 − n3� + �1�n3�
n1n2 − n1 · n2

1 − n3

+ �2�n3�
n2

3 − 3n2n2 · n2

24
�1 − n3�2 . �A1�

Here, � is a free energy density which is a function of a set
of weighted densities 	n�r�
= 	n0 ,n1 ,n2 ,n3 ,n1 ,n2
 with four
scalar and two vector densities. These are related to the den-
sity profile ��r� by

n� = �
i
� dr��i�r��wi

��r − r�� = �
i

�i � wi
�, �A2�

and the hereby introduced weight functions, 	wi�r�

= 	wi

0 ,wi
1 ,wi

2 ,wi
3 ,wi

1 ,wi
2
, depend on the hard-sphere radii

Ri= 	Rs ,Rb
 of the solvent and solute particles as follows:

wi
3 = ��Ri − �r��, wi

2 = �Ri − �r��, wi
1 =

wi
2

4
Ri
,

wi
0 =

wi
2

4
Ri
2 , wi

2 =
r

�r�
�Ri − �r��, wi

1 =
wi

2

4
Ri
. �A3�

The excess free energy functional in Eq. �A1� is completed
upon specification of the functions �1�n3� and �2�n3�. With
the choice

�1 = 1, �2 = 1 �A4�

we obtain the original Rosenfeld functional �3�. Upon setting

�1 = 1,

�2 = 1 −
− 2n3 + 3n3

2 − 2�1 − n3�2 ln�1 − n3�
3n3

2 , �A5�

we obtain the White Bear functional �4,5�, consistent with
the quasi-exact Carnahan-Starling equation of state. Finally,
with

�1 = 1 +
2n3 − n3

2 + 2�1 − n3�ln�1 − n3�
3n3

,

�2 = 1 −
2n3 − 3n3

2 + 2n3
3 + 2�1 − n3�2ln�1 − n3�

3n3
2 , �A6�

the recently introduced White Bear II functional is recov-
ered.
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Next we briefly recapitulate the determination of the ther-
modynamic coefficients p �pressure�, � �hard wall surface
tension�, and � and �̄ �bending rigidity of the integrated
mean and Gaussian curvature, respectively� �6�. Consider the
free energy of insertion Fb for a big solute particle of radius
Rb and associated radius R=Rb+Rs of the exclusion sphere
around it. According to Eq. �16�, it is given by

Fb = p
4


3
R3 + �4
R2 + �4
R + �̄4
 . �A7�

On the other hand, Fb is equivalent to the excess chemical
potential of the solutes in a mixture with solvent particles at
infinite dilution ��b→0�. This excess chemical potential is
obtained as the density derivative � /��b of the mixture free
energy �Eq. �A1��; therefore we obtain

�Fb = lim
�b→0

�
�Fex

��b
=

��

�n3

4


3
Rb

3 +
��

�n2
4
Rb

2 +
��

�n1
Rb +

��

�n0
.

�A8�

By equating the two expressions for Fb in Eqs. �A7� and
�A8�, one finds the explicit expressions for the thermody-
namic coefficients as linear combinations of the partial de-
rivatives �� /�ni. For the Rosenfeld functional, these coeffi-
cients are given by

�p = �s

1 + 	s + 	s
2

�1 − 	s�3 ,

�� = −
3

4
�s�

	s�1 + 	s�
�1 − 	s�3 ,

�� =
3

4
�s�

2 	s
2

�1 − 	s�3 ,

��̄ = �s�
3�− 2 + 7	s − 11	s

2

48�1 − 	s�3 −
ln�1 − 	s�

24	s
� . �A9�

For the White Bear II functional, the thermodynamic coeffi-
cients have been given already in Ref. �6� and are reproduced
here for completeness,

�p = �s

1 + 	s + 	s
2 − 	s

3

�1 − 	s�3 ,

�� = − �s��1 + 2	s + 8	s
2 − 5	s

3

6�1 − 	s�3 +
ln�1 − 	s�

6	s
� ,

�� = �s�
2�2 − 5	s + 10	s

2 − 4	s
3

6�1 − 	s�3 +
ln�1 − 	s�

3	s
� ,

��̄ = �s�
3�− 4 + 11	s − 13	s

2 + 4	s
3

24�1 − 	s�3 −
ln�1 − 	s�

6	s
� .

�A10�

The coefficients of the White Bear II functional are remark-
ably consistent with respect to an explicit minimization of

the functional around solutes of varying radius and fitting the
corresponding insertion free energy to Eq. �A7� �6�.

APPENDIX B: MINIMIZATION OF FUNDAMENTAL
MEASURE FUNCTIONALS IN CYLINDRICAL

COORDINATES

In the following we consider a one-component fluid of
solvent hard spheres only ��s�r����r��. The equilibrium
density profile �eq�r� of the hard-sphere fluid with chemical
potential �=�−1 ln��s�

3�+�ex �corresponding to the bulk
density �s� in the presence of an arbitrary external potential
V�r� is found by minimizing the grand potential

���� = Fid��� + Fex��� −� dr�� − Vext�r�� , �B1�

which leads to

�−1 ln
�eq�r�

�s
= − ���eq�r�� + �ex − Vext�r� . �B2�

The functional ����r�� is given by

����r�� =
Fex���
��r�

�B3�

=�−1�
�
� dr�

��

�n��r��
w��r� − r� . �B4�

For the physical problems of this work, sphere-sphere and
wall-sphere geometry, the external potential Vext possesses
rotational symmetry around the z axis. Therefore we work in
cylindrical coordinates r= �r� cos � ,r� sin � ,z�, in which the
external potential and the density profile depend only on r�

and z, V�V�r� ,z� and �eq��eq�r� ,z�. Equations �B2� and
�B4� can be solved with a standard Picard iteration procedure
or a speed-enhanced scheme �see below�. The technical dif-
ficulty lies in the fast and efficient numerical evaluation of
the weighted densities n�=��w� and the convolutions
�� /�n��w� appearing in Eq. �B4�.

Convolution integrals are calculated most conveniently in
Fourier space where they reduce to simple products. Generi-
cally, the �three-dimensional �3D�� Fourier transforms of the
weighted densities involve a one-dimensional �1D� Fourier
transform in the z coordinate and a Hankel transform of ze-
roth or first order in the r� coordinate �see Appendix B 1�.
Both the 1D Fourier transform and the Hankel transform can
be calculated using fast Fourier techniques �see Appendix B
2�.

1. Weighted densities

The convolution integral, defining the weighted densities
in Eq. �A2�, is calculated by

n�r� =� dq

�2
�3exp�− iq · r��̃�q�,qz�w̃�q� . �B5�

The 3D Fourier transform of the density profile ��r� ,z� ap-
pearing in the above equation is given by
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�̃�q�,qz� =� dr exp�iq · r���r�,z� �B6�

=�
−�

�

dz exp�iqzz��
0

�

2
r�dr�J0�q�r����r�,z� , �B7�

=FT HT0��r�,z� . �B8�

Here, we have introduced shorthand notations FT for the
Fourier transform in the z-coordinate and HTi for the Han-
kel transform in the r� coordinate involving the kernel
Ji�q�r��. A vector in real space is given by r=r�e� +zez,
whereas a vector in Fourier space is given by q=q�e��+qzez,
with e� ·e�=cos �q. The 3D Fourier transforms w̃ of the set
of weight functions w reduce to sine transforms due to radial
symmetry and are explicitly given by

w̃3�q� =
4
R

q2 � sin�qR�
qR

− cos�qR�� , �B9�

w̃2�q� =
4
R

q
sin�qR� , �B10�

w̃2�q� = − iqw̃3�q� �B11�

�The remaining weighted densities differ only by a multipli-
cative factor.� It is convenient to introduce the following par-
allel and perpendicular components of the Fourier trans-
formed vector weights �k=1,2�,

w̃�
k = ie�� · w̃k�q� , �B12�

w̃z
k = iez · w̃k�q� . �B13�

Using these definitions, the scalar weighted densities are
given by

nk�r�,z� = FT−1 HT0
−1��̃�q�,qz�w̃k��q�

2 + qz
2�� �k = 0, . . . ,3� .

�B14�

The vector weighted densities, on the other hand, are given
by two components �k=1,2�,

nk�r� = nk,��r�,z�e� + nk,z�r�,z�ez,

nk,��r�,z� = − FT−1HT1
−1��̃�q�,qz�w̃�

k�q�,qz�� , �B15�

nk,z�r�,z� = FT−1HT0
−1��̃�q�,qz��− i�w̃z

k�q�,qz�� .

We demonstrate this result for the example of the weighted
density n2. Upon choosing r= �r� ,0 ,z� we find

n2�r� =� dq

�2
�3exp�− iq · r��̃�q�,z��− iq�w̃3�q�

�B16�

=�
−�

� dqz

�2
�3exp�− iqzz��
0

�

q�dq��̃�q�,z��
0

2


d�q

�exp�− iq�r� cos �q��− iw̃�
2 cos �q

− iw̃�
2 sin �q

− iw̃z
2 �

= �
−�

� dqz

2

exp�− iqzz��

0

� q�dq�

2

�̃�q�,z�

�� − J1�q�r��w̃�
2

0

− iJ0�q�r��w̃z
2� , �B17�

which is equivalent to Eq. �B15� for k=2. Here we made use
of the integrals

�
0

2


d� exp�− ix cos �� = 2
J0�x� ,

�
0

2


d� exp�− ix cos ��sin � = 0,

�
0

2


d� exp�− ix cos ��cos � = 2
iJ0��x� = − 2
iJ1�x� .

Next we consider the evaluation of the convolution type
integrals appearing in ���� �see Eq. �B4��,

���� = �
�
� dr�p��r��w��r� − r� , �B18�

where p�=�� /�n� and � runs over scalar and vector indices.
For scalar indices, wk�r�=wk�−r�: we recover the standard
convolution integral and thus

� dr�pk�r��wk�r� − r�

= FT−1HT0
−1�p̃k�q�,qz�w̃k��q�

2 + qz
2�� �k = 0, . . . ,3� .

�B19�

In the case of vector indices, we observe that the free energy
density � only depends on vector densities through n1 ·n2
and n2 ·n2. Thus we find �k=1,2�,

pk�r� = pk,��r�,z�e� + pk,z�r�,z�ez �B20�

→p̃k�q� = p̃k,��q�,qz�e�� + p̃k,z�q�,qz�ez �B21�

with

p̃k,��q�,qz� = iFT HT1pk,��r�,z� ,

p̃k,z�q�,qz� = FT HT0pk,z�r�,z� . �B22�

Therefore the vector part summands of ���� are evaluated by
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� dr�pk�r��wk�r� − r� = FT−1HT0
−1�− p̃k,�w̃�

k + ip̃k,zw̃z
k� .

�B23�

2. Fast Hankel transforms

Hankel transforms can be calculated by employing fast
Fourier transforms on a logarithmic grid. Consider the Han-
kel transform,

HT�f�r�� = 2
�
0

�

r�dr�J��q�r��f�r�� . �B24�

We define variables x=ln�r� /r0� and y=ln�q� /q0� with arbi-
trary constants r0 and q0. In terms of these variables

HT�f�r�� = 2
r0
2�

−�

�

dxĴ��x + y� f̂�x� , �B25�

where Ĵ��x�=J��q0r0ex� and f̂�x�=e2xf�ex�. Thus, the Hankel
transform takes the appearance of a cross-correlation integral
and can be solved via Fourier transforms

HT�f�r�� = 2
r0
2FT−1�FTĴ��x�FT� f̂�x�� . �B26�

The Fourier transform of Ĵ� can be done analytically while
the remaining ones are computed numerically using Fast
Fourier techniques.

In the actual implementation we followed Ref. �69� which
details the proof of orthonormality for discrete functions, de-
fined on a finite interval in logarithmic space �and continued
periodically�. The following remarks apply the following:

�i� The fast Hankel transform cannot be applied directly to
the density profile, f�r�����r� ,z�, since it does not go to zero
for r�→�. It is therefore advantageous to split the external
potential

Vext�r� = V�z� + Vs�r�,z� �B27�

into a �possibly� z-dependent background part V�z� and the
remainder. The corresponding background profile �V fulfills

ln
�V�z�

�s
= − ����V�z�� + ��ex − �V�z� . �B28�

The full equilibrium profile can then be written as �eq�r� ,z�
=�V�z��h�r� ,z�+1� with h�r� ,z�→0 for r�→�. The determin-
ing equation for h reads

ln�h�r�,z� + 1� = − ����V�z�h�r�,z� + �V�z�� + ����V�z��

− �Vs�z� . �B29�

Thus one needs to perform Hankel transforms only on func-
tions which properly go to zero for r�→�. In the wall-sphere
case, V�z� is naturally given by the wall potential, Vs be-
comes the solute-solvent pair potential ubs, and h�hbs is the
solute-solvent pair correlation function. In that form, Eq.
�B29� resembles the general closure for integral equations
�Eq. �10��. In the sphere-sphere case, V�z�=0 with �V=�s.

�ii� The assumed periodicity of f̂�x� leads to restrictions
on the product q0r0 �low-ringing condition in Ref. �69��. This

condition cannot be fulfilled on one grid for both HT0� · � and
HT1� · �. However, this does not lead to any noticeable insta-
bilities in the repeated application of the fast Hankel trans-
form.

�iii� In order to avoid aliasing and the amplification of

numerical “noise” in the low-x and high-x tails of f̂�x� in the
repeated application of the fast Hankel transform we worked
with cutoffs rmin /r0=qmin /q0=0.01 and rmax /r0=qmax /q0
=O�100�. The fast Hankel transform itself was
calculated on an extended grid x� �−N��x /2, N��x /2�
with either N� =2048, �x=0.01 or N� =4096, �x=0.005.
Outside the “physical” domain defined by xphys

� �ln�rmin /r0� , ln�rmax /r0�� the function f̂�x� was put to zero
�a similar prescription applies to yphys�.

3. Speedup of iterations

The density profile ��r� ,z�, the weighted densities n�r� ,z�,
and the derivatives p�r� ,z�=�� /�n�r� ,z� have been dis-
cretized on a two-dimensional grid spanning the plane �r� ,z�.
Spacing in z direction was equidistant with grid width
�z=0.002� , . . . ,0.005� with up to Nz=15 000 points. Spac-
ing in r� direction was logarithmic �see above� with N�

�1000, . . . ,2000 points. Memory requirement went up to 16
GB for the largest grids. Computations have been performed
on nodes with 16 Gbytes random access memory �RAM� and
two Intel QuadCore processors, with OPENMP parallelization
of the arrays of Fourier and Hankel transforms. One evalua-
tion of ���� �one iteration� took up to 2 min.

The equilibrium density profile fulfilling Eq. �B2� or Eqs.
�B28� and �B29� can be determined by Picard iterations
where, as a minimum requirement for convergence, careful
mixing of the current and previous iteration is necessary.
However, for packing fractions 	�0.3 and larger colloid-
solvent size ratios ��5 one easily needs several hundreds to
thousands of iterations until convergence. In view of the it-
eration times up to 2 min, this is unacceptable. Therefore we
employed the modified direct inversion in iterative subspace
�DIIS� scheme developed in Ref. �70� which essentially con-
structs the next iterative step out of a certain number of pre-
vious steps. In the DIIS scheme, the mixing coefficients of
the previous steps, determining the solution of the next step,
are obtained by a minimization condition on the residual.
The modification to DIIS consists in the admixture of the
extrapolated DIIS residual to the solution of the next iterative
step in order to enlarge the dimensionality of the iterative
subspace and thus to reach the true solution much more
quickly. Our practical experience with modified DIIS is very
similar to the observations in Ref. �70�; this includes the
necessity to combine DIIS with Picard steps carefully in case
the DIIS steps show divergent behavior. In summary, modi-
fied DIIS is a robust method for our problem, and the total
number of iterations is reduced to approximately 100 and
less for most parameter choices. The only noticeable excep-
tion occurred for the case of the nearly singular annular
wedge, i.e., when the distance h between wall and colloidal
sphere �or the two colloidal spheres� is �1� and the solvent
packing fraction 	s�0.35. Here, several hundreds of inter-
mediate Picard steps between two DIIS steps where occa-
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sionally necessary to prepare the ground for the next DIIS
step.

APPENDIX C: INTEGRAL EQUATIONS FOR THE
SOLUTE-WALL CASE: NUMERICAL SOLUTION

In cylindrical coordinates the inhomogeneous OZ equa-
tions �Eqs. �7� and �8�� read as

hss�z,z0,s� − css�z,z0,s� =� ds�dz��V�z��

�hss�z,z�, �s − s���css�z�,z0,s�� ,

�C1�

hbs�z,z0,s� − cbs�z,z0,s� =� ds�dz��V�z��

�hbs�z,z�, �s − s���css�z�,z0,s�� ,

�C2�

where the total and direct correlation functions hij�z ,z0 ,s�
and cij�z ,z0 ,s� of two particles depend on the distances z and
z0 from the wall and on the projection of their position vec-
tors on the direction along the wall, s=r� −r�,0. The integral
over s� is a 2D convolution, which is most efficiently done
by means of the fast Hankel transform of the zeroth order
�see Appendix B 2�. In Fourier space, the OZ equations be-
come

h̃ij�z,z0,q�� − c̃ij�z,z0,q��

= �
k=b,s

� dz��V,k�z��h̃ik�z,z�,q��c̃kj�z�,z0,q�� , �C3�

where h̃�c��z ,z0 ,q��=HT0 h�c��z ,z0 ,r��. The remaining z in-
tegral is evaluated with a simple trapezoidal rule on a uni-
formly discretized grid of Nz points, yielding the following
matrix equation:

Hij�q�� − Cij�q�� = �
k=b,s

Hik�q��RCkj�q�� , �C4�

where H and C are Nz�Nz matrices generated by the corre-
sponding correlation functions at each q� point and R is a
diagonal matrix corresponding to �V�z��z−z��.

The Lovett-Mou-Buff-Wertheim �LMBW� Eq. �9� for the
background density profile in the presence of a hard wall
takes the following form:

��V�z�
�z

= �V�z���V�0�� dr�css�z,0,r��

+� dz�dr�css�z,z�,r��
��V�z��

�z�
� . �C5�

Here the 2D integration over r� can be considered as the dc
component q� =0 of the Hankel transform of the direct cor-
relation function c̃ss�z ,z� ,q�� and the remaining integral in
the second term is taken again with the trapezoidal rule. Note

that the contact density at the planar wall is known exactly
from the wall theorem �V�0�=�p, where p is the bulk pres-
sure �71�. Thus, a substitution of the contact density by the
expression for the bulk pressure provides the modified
LMBW equation for the density profile �72�. Following the
ansatz of Plischke and Henderson �73�, we used the
Carnahan-Starling fit for pressure, which is the first equation
in Eq. �A10�. This in general should improve the accuracy of
the density profiles near a planar wall if an approximation to
the solvent direct correlation function css�z ,z� ,r�� is applied.

Closure Eq. �10� is the central one in the elaboration of a
successful theory since the OZ and LMBW equations de-
scribed above are formally exact and need to be comple-
mented with a third relation between correlation total and
direct functions. Unfortunately, in its exact form this third
relation, expressed via additional bridge function bij�r ,r0�, is
defined only as an infinite sum of highly connected bridge
diagrams and so cannot be fully utilized. In practice, one
needs to resort to different approximations, which are suited
for particular applications depending on the system state. We
considered the Percus-Yevick �PY�, Rogers-Young �RY�, and
modified Verlet �MV� closures defined in Eqs. �11�–�13�. For
RY we use a scaled one-parameter form for �ij, �ij =� / �Ri
+Rj�, with �=0.160 to fulfill the single-component thermo-
dynamic consistency requirement. For �=0 one recovers the
PY closure �Eq. �11��, while for �→� one obtains the HNC
closure. Likewise the HNC closure is recovered if �ij→� in
the MV closure �Eq. �13��. MV is consistent with PY up to
the fourth virial coefficient if the �ij are density independent.
Here we follow the suggestion of Henderson et al. �53� and
use their definition for the state-dependent parameters �ij. In
the infinite dilution limit considered in the present paper
these parameters reduce to the one-component form

� =
17

120	s
exp�− 2	s� + 0.8 − 0.45	s.

The contact values from the MV closure proved to be in
good agreement with the values calculated from Carnahan-
Starling equation of state, which constitutes a considerable
improvement over the PY and HNC approximations.

In the application of these closures to the inhomogeneous
system the following precautions must be observed to obtain
robust results.

�i� Technically we use the same iteration scheme as in
Appendix B 3 for the numerical solution of Eqs. �C4�, �C5�,
and �10� �though due to the memory restrictions the z-grid
spacing was only �z=0.05� with up to Nz=400 points�. The
convergence drastically depends on the initial conditions,
i.e., the zeroth iteration. While solving the PY closure it was
enough to initialize both solvent-solvent and solute-solvent
correlation functions with zeros and the RY and MV solute-
solvent correlations have to be initialized with a good guess
to the final solution �which was actually the corresponding
PY result�. The LMBW equation imposes even stronger re-
quirement on the initial profile, which needs to be either
close to the true profile or evolve very slowly from the flat
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profile together with the corresponding correlation functions.
�ii� It turned out that the order of iterations is crucial for

the overall convergency: for a given approximation to the
density profile one needs to solve the closure and OZ equa-
tions prior to the next iteration on the LMBW equation. It is
therefore very costly to get a fully self-consistent solution of
all three equations and normally the convergence goal for the
background density �V�z� is much lower than for the
correlation functions.

�iii� To avoid the necessity of requiring the bulk equilib-
rium behavior in correlation functions for distances far
enough from the hard wall, we introduced the second wall at
L�20� apart from the first one. The wide slit geometry
allowed us to keep the z resolution at the maximal possible
yet feasible level. Finer resolution in z in general improves
numerical stability of the iteration procedure. Alternatively,
one can use a very recent method of the expansion into the
orthogonal set of functions proposed by Lado in Ref. �74�.
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